Lecture 2: Intro to Particle Detectors and Interaction of Particles with Matter

- Particle Detector Overview
 - Goals and strategies
- Interaction of Charged Particles with Matter
 - Ionization energy loss and Beta-Block
 - Landau distributions
 - Coulomb scattering
- Detecting Charged Particles
 - Proportional Counters
 - Drift Chambers
 - Silicon Detectors
 - Scintillation Counters

Next Time: Calorimeters and Accelerators

References

- K. Kleinknecht, Particle Detectors reprinted in Ferbel, Experimental Techniques in High-Energy Nuclear and Particle Physics
- Particle Data Group Reviews:

http://www-pdg.lbl.gov/2011/reviews/rpp2011-rev-particle-detectors-accel.pdf

http://www-pdg.lbl.gov/2011/reviews/rpp2011-rev-passage-particles-matter.pdf

Web pages of all major experiments

Overview

- Basic concepts of particle detection haven't changed in 50 years
- Major improvements in detector technology have played a critical role in field:
 - Size: Uncertainty principle tells us probing smaller structure requires higher energy
 - Speed: Search for rare processes requires high rate event collection
 - Complexity: Large number of channels (up to 10⁸) and need to combine different detectors to measure all aspects of complex events

Classification of Particle Detectors: What Do We Measure?

- Charged Particles
 - Momentum: Determine trajectory in B field
 - Mass: More difficult; requires estimate of velocity
 - Energy: Deposited via EM interaction (ionization)
- Strongly Interacting Neutral Particles
 - Energy: Deposited via nuclear interaction
- Photons
 - Energy: Pair production followed by ionization
- Muons
 - No hadronic interactions and less brem than electrons
 - Can pass through lots of matter (energy loss by ionization loss)
- Neutrinos
 - Often observed by their absence: missing momentum
 - Weak interactions with nucleus (eg $v_{\mu}N \rightarrow \mu X$)

How It Works: An Example

Interaction of Particles With Matter

- Except for hadron calorimeters (where nuclear interactions dominate are source of showers) and v detectors, particle detection depends on EM interactions
 - Even for the exceptions: EM interactions dominate the detection of secondaries
- Charged particles leave ionization trail
 - Detection of trail gives trajectory
 - Amount of ionization depends on momentum
 - Total energy deposited when particle stops measured by number of ionizing particles produced in shower
- Statistical description of ionization energy loss

Ionization Energy Loss: Bethe-Block Equation

- Particle with:
 - charge z
 - velocity v/c= β and γ = $\sqrt{1/1}$ - β ²
 - T_{max}: maximum energy loss in a single collision
- traverses medium with:
 - Atomic mass and number A and Z
 - Density ρ
 - Ionization potential I
- K/A = 0.307075 MeV/g for A= 1 g/m

- Energy loss per unit length
- Quoted in MeV cm²/g where x is in ρs, ρ=density x=distance

$$\frac{-dE}{dx} = Kz^{2} \frac{Z}{2} \frac{1}{\beta^{2}} \left\{ \frac{1}{2} \ln\left(\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{max}}{I^{2}}\right) - \beta^{2} - \frac{\delta(\beta\gamma)}{2} \right\}$$

More on Beta-Block

- Mean energy loss per cm: dE/dx depends on βγ
 - $(dE/dx)_{min} \sim 1 \text{ to } 1.5 \text{ MeV cm}^2/g$
- Accurate to a few per-cent for $0.1 < \beta \gamma < 1000$
- Size of "relativistic rise" depends on density of medium
- Note: Beta-Block eq uses approx that incident particle heavy wrt mass of electron
 - Similar expressions for electrons

Large Statistical Fluctuations in Energy Deposition: Landau Distribution

- High energy tail: knock-on electrons ("delta-rays")
- Best estimate of $\beta\gamma$: make multiple measurements and take truncated mean

Coulomb Scattering

- Change in momentum of particle dominantly caused by EM scattering with nuclei
- Scattering Cross Section: Rutherford Scattering

$$\theta_{\rm O} = \theta_{\rm plane}^{\rm rms} = \frac{1}{\sqrt{2}} \theta_{\rm space}^{\rm rms} \ . \qquad \qquad \theta_{\rm O} = \frac{13.6~{\rm MeV}}{\beta cp} \ z \ \sqrt{z/X_{\rm O}} \Big[1 + 0.038 \ln(z/X_{\rm O}) \Big] \ . \label{eq:theta_O}$$

X₀ is called the "radiation length:

$$\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 \left[L_{\rm rad} - f(Z) \right] + Z L_{\rm rad}' \right\}$$

Tracking Detectors: Momentum Measurement (I)

- Measure particle's trajectory and momentum
 - Can also measure ionization to identify species
- Trajectory determined from position of measurements
- Momentum determined from radius of curvature R when particle passes through magnetic B field
 - $P_{T} (GeV/c) = 0.3 BR$
- R determined from measurement of sagitta s

$$\frac{L/2}{R} = \sin\frac{\theta}{2} \approx \theta$$

$$s = R\left(1 - \cos\frac{\theta}{2}\right) \approx R\left(1 - \left(1 - \frac{\theta^2}{8}\right)\right) \approx R\left(\frac{\theta^2}{8}\right) \approx \frac{0.3BL^2}{8p_T}$$

$$s = x_2 - \frac{1}{2}(x_1 + x_3)$$

$$ds = dx_2 - dx_1/2 - dx_3/2$$

$$\sigma_x^2 = \sigma_x^2 + 2(\sigma_x^2/4) = 3/2\sigma_x^2$$

Tracking Detectors Momentum Measurement (II)

• For N=3 measurements, results on previous page give $\sigma(p_T) = \sigma_V - \sigma_V - \sigma_V - \sigma_V$

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma_x}{s} \sqrt{3/2} = \frac{\sigma_x \cdot p_T}{0.3 BL^2} \sqrt{96}$$

For N>10 measurements:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma_x \cdot p_T}{0.3 BL^2} \sqrt{720/(N+4)}$$

• Gluckstern, NIM 24 (1963) 381.

From Mike Hindreth

Charged Particle Detectors: Bubble Chamber

- Very important in early history of the field
- Charged particles leave tracks (bubbles in superheated liquid in metastable state
- Not commonly used now
 - Slow
 - Requires scanning of pictures
 - But some specialized applications

Charged Particle Detectors: Proportional Counters

- Simplest Example: Single wire in a tube
 - Radial electric field $E(r) = E_{o}/r$
 - Thin wire means large field near wire
 - Ionization electrons drift towards wire and gain energy
 - These electrons ionize gas: avalanche process
 - At moderate voltage, collected charge proportional to initial ionization energy
 - At high voltage saturation: Geiger mode
- Instead of tube, can have multiple wire prop counter with wires or anode sheets to shape field

Charged Particle Detectors: Drift Chambers

- Position resolution of MPWC determined by wire spacing
- Can improve resolution by measuring drift time
 - Need fast start signal to start the clock
- Different geometries possible: flat chamber, cylindrical
 - Special case: Time Projection Chamber (TPC)

Babar Drift Chamber

Star Time Projection Chamber 1

Charged Particle Detector: Silicon Detectors

- Silicon based detectors: natural outgrowth of semiconductor industry
 - Arrays of p-n junctions operated in reverse bias region
 - Depleted region with no mobile charge carriers and E field
 - Ionization moves in E field and is collected
- Very high granularity
 - Etching process to separate detector elements
 - Integrated front end electronics bonded to detectors
 - Two configurations: strips and pixels
- Good position resolution
- Radiation Hard

Particle Detection in Silicon

- Example: ATLAS SCT
 - Ionization in si leaves electrons and holes
 - Holes drift to to negatively charged p-type strips
 - Induce a charge in Al strips that are connected to readout electronics
 - Principle the same for pixels, but segmented in 2D

- Design issues:
 - Strips only give 2D information: Need stereo strips to infer z position
 - Silicon plus support structure and cooling mean lots of material: increases multiple scattering and conversions
 - Many electronic channels: 10⁶ for strips, 10⁸ for pixels Can't read them all: zero suppression
 - Cost

Charged Particle Detectors: Scintillation Counters

- In certain materials, ionizing particles excite atomic or molecular states that de-excite and give off light
- Photomultiplier tube used to read out signal
- Two kinds of scintillator:
 - Organic:
 - Molecular excitation emits light in UV
 - Converted to blue visible via fluorescence in wavelength shifter
 - Often used in "trigger" (fast response)
 - Inorganic:
 - Crystals (eg Nal)
 - High density: Particles stop
 - Main use is for calorimetry

Charged Particle Detectors: Cherenkov Detectors

- Cherenkov light when particle's speed larger than speed of light in medium
- Light emitted in cone of fixed angle for given velocity
- Two types of detector:
 - Threshold: Separate particle species in given momentum range
 - Ring Imaging: Measure β from angle

LHCb RICH Detector

More on Cherenkov Detectors

- Angle depends on medium and particle β
- Can distinguish species by measuring the angle (radius of cone where light detected)

- Example of an electron ring seen in super-K experiment
- Water cherenkov detector with photo-tubes on outside

Summary

- Charged particle detection relies on collecting ionization energy
- Trajectories measured from position of ionization
- Momentum measured from curvature in B field
- Amount of ionization sensitive to speed: together with momentum can deduce mass
- Wide variety of charged particle detectors exist
 - Cloud and bubble chambers
 - Wire chambers
 - Drift chambers
 - Silicon strip and pixel detectors
 - Scintillators
 - Cherenkov Detectors